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Abstract 

Let M be a 2n-dimensional almost complex manifold: we construct a local almost complex 
structure starting from a Nijenhuis tensor given at a point. Moreover, we determine, on a 6-manifold, 
the conditions ensuring that its Nijenhuis tensor induces a Lie algebra structure on the tangent space. 
We give a class of examples for every kind. 
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0. Introduction 

One of the most intriguing problems in complex geometry is to investigate how to deform 
almost complex stru&ures in order to obtain an integrable one; no obstructions are known 
for real dimension > 6. 

The failure of integrability is fully measured by the Nijenbuis tensor and an interesting 
subject is to characterize the class of such tensors. 

In this paper we study some related questions with special attention to the six-dimensional 
case. We start by proving that, given a skew-symmetric and J-antibilinear map y E 
Bil(l&“, II@“), there exists a local almost complex structure on R2” whose Nijenhuis tensor 
at the origin is y . An application of this construction is given in Section 3.1, where y is the 
vector product of C3 (in the canonical identification with R6). We note that this example 
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produces a model of a totally non-integrable almost complex structure (see [4]) and the 
six-dimensional case is the first which may occur. 

Since ZVJ[X] induces an antibilinear skew-symmetric application T”‘M x 7”“M + 
Z’.,‘*‘A4, it is natural to ask for the condition ensuring a Lie algebra structure on Ti’.‘M. 
By the classification of three-dimensional complex Lie algebras (see [6]), in Section 3 we 
produce a list of typical examples for every kind. 

1. Construction of Niienhuis tensors 

Let (M, J) be an almost complex 2n-manifold and NJ be the Nijenhuis tensor of J, 

NJ(X, Y) = 2([JX, JY] - [X, Y] - J[JX, Y] - J[X, Jr]). 

It is immediate to check that the Nijenhuis tensor satisfies the following algebraic conditions: 

NJ(X, Y) = _NJ(Y, X), 
NJ(JX, Y) = N/(X, JY) = _JNJ(X, Y). (1-l) 

We recall the definition of totally non-integrable almost complex structure on a manifold 
M. Let J be an almost complex structure on a 2n-dimensional manifold M and NJ be its 
Nijenhuis tensor; 

Definition 1.1. An almost complex structure J on a manifold M is said to be totally non- 
integrable if 

Span{N~[p](X, Y): X, Y E T,M} = TpM. 

We observe that for n = 1,2 an almost complex structure is never totally non-integrable. 
In Section 3.1 we will give two examples of such structure. 

It is natural to ask: When there exists an almost complex structure J on R2” such that its 
Nijenhuis tensor, evaluated at the origin, is equal to a given application I@” x I@” + R2” 
satisfying (1.1). Consider an almost complex structure J on R2n and define y = J,[O], 
where J* is the Jacobian of J; y is a bilinear form on R*” x I%*” with values in R2”, i. e. 
y E Bil(R *“, I@). Explicitly we have 

v(X, Y) = J*mmy 

and, for example, 

. 

By 3* = -I it follows that 

y(X, JVJIY) = -J[Oly(X, Y). 
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Let 

Byq2 = {r E Bil(R2n, R2n) : y(X, J[O]Y) = -J[O]y(X, Y)) 

and define 

4N,(X, Y) = y(X, Y) - y(Y, X) - y(J[OlX, J[OlY) -t y(J[OlY, J[OlX) 

for y E BT*. 

Remark 1.1. 
(i) The application y I% N, is an endomorph&m of BT’; 

(ii) N(N,) = N,. 

From this remark it follows that 

$2 
.I =KerN@ImN 

and 

ImN = (r~#‘~: v(X, Y) = -v(Y, X)]. 

Therefore ImN is the space of bilinear forms satisfying (l.l), i.e. the space of Nijenhuis 
tensors at a point. 

From now on we will assume that y E Im N is known and we are looking for an almost 
complex structure J whose Nijenhuis tensor evaluated at the origin is y . 

We may consider J of the form J[x] = A[x]JuA-‘[xl with 

and AIO] = A-‘[01 = I. By a direct computation it follows that 

4JoN~,[ol = +‘AOl 

and being N~,lol = J,[Ol, we have 

J,[O] = Jo~NJ[OI. 

We have 

~(ei, .) = J*[O](ei). = (A*[O](ei)Jc + Jo(A-t)*(q)). = [AJOl(ei>, JOI. . 

If P is a solution of the linear systems 

QJaY(ei, .) = [P(ei), Jo]. fori = 1, ..-.,2n, 

which we can solve one by one, then we may construct A[x] such that 

AIO] = I, A,[01 = P. 

(1.2) 
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Then the almost complex structure J[x] = A[x]JoA-‘[0] satisfies the required condition. 
Therefore we have proved the following: 

Proposition 1.1. Given any y E Bil(R 2n , R2”) satisfying (1. l), there exists an almost com- 
plex structure Jon lR2” such that 

JWI = Jo, NJPI = Ys 

2. Nijenhuis tensors and Lie algebras 

One of the most interesting situations is the six-dimensional case; in fact we have the 
following special construction. 

Let (V, J, g) be a six-dimensional real vector space with a complex structure and a 
J-Hermitian scalar product. With respect to the Hermitian product h, induced by g on V’*O 
let a! E A370 V* with (1 (Y ](h,= 1 and V$ : V x V + V be defined by 

o(u, w, U) = hg(u, V,g(w, u)). 

The map Vi is bilinear, satisfies (1.1) and extends to an antisymmetric form on V@ with 
values in V@ which is C-bilinear with respect to the canonical complex structure and 
C-biantilinear with respect to the extension of J to V”. Note that, if {IQ, 19, IQ} is a 
h,-unitary @-basis with a(vr, ~2, us) = 1 then Vj(u1, ~2) = ~3. Vj(u2, ug) = u1 and 
v&3, VI> = u2. 

We observe that a change of basis preserves this form of Vi if and only if the matrix 
change is in SO(3, C). 

Let N : V x V + V be a bilinear map satisfying (1.1). Then there exists L(N) E End(V) 
such that 

Iv = L(N) 0 v,g, [UN), Jl = 0 

(see [4] for more details). 
Let (M, J) be a six-dimensional almost complex manifold: in this section we describe 

the condition in order that a Nijenhuis tensor induces a Lie algebra structure on T,M. 
Let N : 56’ x R6 -+ lR6 be a bilinear map satisfying (1. l), where 

J=Jo=(; -;) 

and (et, e2, e3, Jel, Je2, Jeg} be the canonical basis of R6 and k : lR6 + C3 the corre- 
sponding isomorphism. From now on we will not distinguish between GL(3, C) and its 
image in GL(6, W) (respectively gt(3, C) and its image in g1(6, R)). We define 

[u, w] = k(N(k-‘(fi), k-‘(G))) Vu, w E C3. 

This map is C-bilinear and skew-symmetric. We have the following: 
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Lemma 2.1. Let L E GL(3, C) and 

N(X, Y) = L@(X, Y)). 

249 

Then the previously dejned bracket [ , ] induces a structure of Lie algebra on C3 ifand only 
ifL =‘L. 

Proot It is sufficient to check the Jacobi identity on the o-special basis ~1, 212, ‘~3. 0 

Note that the Lie algebra (C3, [ , 1) is simple since its derived algebra is equal to the 
algebra itself and therefore there is no proper ideal. 

Remark 2.1. If L E End(C3) has rank one, then [ , ] always induces a complex structure 
of Lie algebra. In fact, in such a case, we may suppose 

Then the Jacobi identity is always satisfied. In particular, by the classification of the three- 
dimensional complex Lie algebra (see [6]), we have two cases: 
(1) The Heisenberg algebra, whose multiplication table is given by 

[VI v v21 = ‘u31 [v2, v31 = 0, [VI, v31 = 0, 

which implies that 

We note that the table is fixed by the change of basis of the following form: 

42 

a22 

a32 alla22 - a12a21 

(2) For the other one we may choose a basis (VI, ~2, vg] such that 

[VI, v21 = VI, [v2, v31 = 0, [Vl, u31 = 0. 

Therefore 

and the table is fixed by A E GL(3, C), 

A= (‘i 1: i). 
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Remark 2.2. Note that the case rank L = 2 with L E End(C3) is related to the complex 
three-dimensional Lie algebras with bidimensional derived algebra. In such a case we may 
choose a basis such that 

[Ul, u21 = 0, rv1, v31 = YVl + sv2, 

with a6 - /lv # 0. Therefore 

[Ul, v31 = au1 + Bu2 

and the table is fixed by the elements A = (aLi> E GL(3, C) such that 

@21a32 - a22a31)Y = a@3lal2 - alla32), 

h21a32 - a22a31)a = p@31@2 - alla32), 

b21a33 - a23a31h’ = ‘da3143 - alla33) + (aall + @12>, 

k21a33 - a23a31)8 = /3@3lal3 - allQ33) + (au21 + pQ22)9 

aa31 + @32 = 0, 

h22a33 - a32a13h’ = da32@3 - a12a33) + ()‘a11 + 642), 

k22a33 - a32a13)a = Bh32a13 - a12a33) + ()‘a21 + 6U22), 

)‘a31 + SU32 = 0. 

The first two equations imply that 

@21a32 - a22a31) = h31a12 - UllU32> = 0. 

Finally if L E GL(3, C), then the canonical form of the multiplication table is [Vi, uj ] = 
VOlg(ui, uj); consequently L = I. In such a case the table is fixed by SO(3, C). 

3. Constructions of models 

3.1. Local model for totally non-integrable Nijenhrds tensor 

Consider the map Vj : C3 x C3 += C3 defined in Section 2. With respect to a-special 
basis (et, e2, eg}, we have 

V$(et, e2) = e3. Vi(e3, el) = e2, vi@2, e3) = el. 

As an application of Proposition 1.1, we start determining an almost complex structure J 
on a neigbourhood of the origin of lR6, whose Nijenhuis tensor NJ takes the value NIO] = 
V,g. 

We consider the unknown J[x] of the following form: 

J[x] = A[x]JoA-‘[xl, 
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A[xl being in GL(6,rW) and such that A[01 = I. If we impose condition (1.2), then we get 
a linear system in the unknowns ah Aik [0] , whose interesting equations are: 

-&&I + %&I = $, -&As1 f as&t = -& 

-at&2 + a4A62 = ;, -a3A12 -t a6A42 = -& 

-a2A13 + asA = $, -alA + a4A53 = -4, 

&Ajk being evaluated at the origin. Therefore a possible solution of this linear system is 
given by: 

alA23rOl = 4, a2A31LOl = ft a3A12[01 = $, 

alA32fOl = -;, aZA13LOl = -4, a3A21LOl = -it 

a4A62[01 = {, a5A43[01 = ;, a6A5dOl = +, 

a4A53[01 = -& a5A6dOl = -4, a6A42[01 = -& 

and ai Ajk [0] = 0 otherwise. 
Therefore we may choose 

1 x3/8 -x2/8 0 0 0 
-x3/8 1 x1/8 0 0 0 

A[x] = 
x2/8 -x1/8 1 0 0 0 

0 -x6/8 x5/8 1 0 0 
x6/8 0 -x4/8 0 1 0 

-x5/8 x4/8 0 0 0 1 

and consequently J[x] = A[x]JoA-~ [x] is alocal model for a totally non-integrable almost 
complex structure with NJ[O] = Vj. 

Remark 3.1. Another example of totally non-integrable 6-manifold is the sphere S6 = 
[x E ZmCay ]]]x ]I= 1) endowed with the almost complex structure J[p]x = px Vp E 
S6, Vx E TpS6. The Nijenhuis tensor is 

N~b](x, Y) = 2((Px)Y - P(xY)>. 

Therefore we may choose an orthonormal C-basis on Tps6 such that NJ has the form of 
V$ (see [4] for more details). 

3.2. Global model of rank-two Nijenhuis tensor 

Let (M, g) be a three-dimensional Riemannian manifold, V be the Levi Civita connection 
and R its curvature. We recall some facts on the tangent bundle n : TM + M (see [2]). 
Let 

T(x,u)TM = H(w) CB V(w) 

be the splitting induced by V for (x, u) E TM. 
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Given X[x] = ~~=lXi(a/axi) E T,M recall that we may define the horizontal and 
vertical lift, respectively, of X as 

Xh,(X, a)] = &xi 
3 

i=l 

~~)~ - C ~i)x’u’~ E H(x,u), 
i.j,k=l 

X”[(x, u)l= &xi 0 n,; E V(,,,), 

i=l 

where (zE’ , X2, X3, ul, u2, u3) is the system of coordinates induced by the local coordinates 
on M and ri; are Christoffel’s symbols of V. Now we may define an almost complex 
structure J on TM by setting 

JXh =X”, JX” = -Xh. 

We have the following formulas: 

[Xh, Yh] = [X, Y]* - (Rxru)U, [Xh, Y”] = (V,Y)“, [X”, Y”] = 0. 

It follows that 

N(Xh, Yh> = (Rxyu)U, N(Xh, Y”) = (RxytQ, N(X”, Y”) = (Rxyu)“. 

Remark 3.2. Note that the almost complex structure J on TM may be defined for any 
dimension of M. 

Suppose that M is a three-dimensional space form. Therefore 

RXY Z = k(g(X, Z>Y - g(Y, Z)-V 

and dim&pan(N[(n, u)](X, Y): X, Y E T(x,,) TM) = 4. The conditions in order that N 
induces a Lie algebra on (T(x,,)TM, J[(x, u)]) are expressed by the Jacobi identity. Set 

a h 
- iJ[(x, u)l,xi forj = 1,2,3. 

We have 

[Zj, Zkl = (Ra,axja,a,ku)* i- i(Ra,axja,a,kU)h, 

that is the bracket defined in the previous section. 
By setting u = ozr + Bz2 + yz3 we have a Lie algebra if and only if 

cz(yz2 - Bz3) = 0. 

The first case cr = 0 implies that 
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while the second one 6 = y = 0 determines 
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We note that all the three-dimensional complex Lie algebra with two-dimensional derived 
algebra may be obtained by a suitable choice of CY, B, y. 

3.3. Global model of rank-one Nijenhuis tensor 

We recall the general construction of the twistor space Z(M, g) over an oriented 
2n-dimensional Riemannian manifold (M, g). The six-dimensional twistor spaces will 
furnish the global model. 

Let (M, g) be an oriented 2n-dimensional Riemannian manifold, P(M, SO(2n)) be the 
bundle of oriented g-orthonormal frames of M and 

Z(M, g) = 
P(M, SO(2n)) 

U(n) ’ 

with natural projection 3r : P(M, SO(2n)) + Z(M, g) be the twistor space of M (see 

[3Sl). 
Z(M, g) is a fibre bundle on M with standard fibre Z(n) = S0(2n)/U(n> and bundle 

projection r : Z(M, g) + M. 
Let x E M and Q E r-‘(x) = Z,. Choose a E P(M, S0(2n))/U(n> such that ir(a) = 

Q. We may define 

Jx : T,M + T,M, J, =ao Jooa-‘, 

where JO is the canonical complex structure over lR2’ and a is viewed as a g-isometry 
The Levi Civita connection on P( M, SO(2n)) induces a splitting 

TQZ(M) = HQ $ VQ, 

where 

VQ = TQzr(Q) = (X E End(Tr(Q) M): X is g-antisymmetric XQ = -QX}. 

Defining JQ : TQZ,(Q) + TQZ,(Q) as 

.?QX = QX, 

we may introduce an almost complex structure J on Z(M, g) by setting 

JQX = (‘*‘h(Q) 0 Jr(Q) 0 r*iQ)Xh + Qx”, 

where X = Xh + X” , with Xh E HQ, X” E VQ. 
We recall the following: 
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Proposition 3.1. The Nijenhuis tensor N,J of J is horizontal and vertical valued, i.e. 
(i) NJ ]Q(X, Y) = 0 ifX is vertical; 

(ii) NJIQ(X, Y) E VQ VX, Y E TQZ(M). 

If M is four-dimensional, then its twistor space is six-dimensional. Note that if Z(M, g) 
is not integrable ( W+ # 0, see [l]), then the zero locus of Nijenhuis tensor NJ intersects 
each fibre on four points (see [7]) and then its image is two-dimensional generically. Conse- 
quently, NJ induces on TQZ(M, g) a complex Lie structure with one-dimensional derived 
algebra. Proposition 3.1 implies that the derived algebra is contained in the vertical sub- 
space. Therefore, the image of NJ is in the centre of the algebra. We may conclude that the 
Lie algebra induced is always of the Heisenberg type. 
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